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ABSTRACT Harnessing recent advances in data science and
materials engineering, it is feasible today to build reliable
models for predicting materials properties. Here we employ a
comprehensive dataset of 170,714 inorganic crystalline com-
pounds obtained from high-throughput accurate quantum
mechanics calculations, to train a machine learning model for
the precise prediction of the formation energy of inorganic
compounds. Distinct from previous studies, our model can be
universally applied to a large phase space of inorganic mate-
rials as all the data is utilized for the training, and the model
reaches a fairly good predictive ability (R2 = 0.982 and mean
absolute error = 0.072 eV atom−1, DenseNet model). The im-
provement comes from several effective structure-dependent
descriptors, which are carefully designed to take into account
the information of the electronegativity difference between
neighboring atoms and local atomic structure. This model
provides a useful tool to predict the energy landscape of the
compound systems in a fast and cost-effective manner.
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INTRODUCTION
The formation energy (Eform) of crystals, i.e., the energy to bind
atoms together to form condensed phase of matters, is one of the
most important physical properties of a material. The Eform
represents the strength of the adhesion of atoms to each other
within a material system, and is responsible for many thermo-
dynamic- and kinetic-related properties, such as stability [1] and
synthesizability [2] of a compound. The value of the Eform can be
obtained from the first-principles calculations, which are rela-
tively computation-intensive and expensive. Harnessing the
advances of computational materials science databases, as well as
the knowledge of data science, the Eform prediction can now be
achieved in an easier and more effective way.
Previously, attempts have been made to quickly gauge the

Eform of inorganic materials. For example, Cao et al. [3] utilized a
convolution neural network (CNN) model and mixed Magpie
descriptors [4] and orbital-field matrix (OFM) descriptors [5] as
input for predicting the Eform using data of more than 4000
crystalline materials including transition metal binary alloys,

lanthanide metal and transition metal binary alloys. The pre-
diction of Eform achieved a mean absolute error (MAE) of
70 meV atom−1. Ye et al. [6] used the Pauling electronegativity
[7,8] and ionic radii [9] of the constituent species as the input
descriptors with artificial neural networks (ANNs), and obtained
a model with extremely low MAEs of 7–10 and 20–
34 meV atom−1 in predicting the Eform of garnets and per-
ovskites, respectively. Ward et al. [10] built a machine learning
(ML) decision tree model by training with a dataset of inorganic
compounds taken from the Open Quantum Materials Database
(OQMD) [11], and achieved an MAE of 80 meV atom−1 in cross
validation for predicting Eform by employing structural descrip-
tors from the Voronoi tessellation of the structure of crystalline.
Xie and Grossman [12] proposed a generalized graph convolu-
tional neural networks (CGCNN) model for material property
predictions, and their model for the Eform prediction reached an
MAE of 39 meV atom−1 with the dataset of 28,046 samples taken
from the Materials Project [13]. Li et al. [14] proposed to use
deep neural network-based transfer learning and a set of hybrid
descriptors for perovskite Eform prediction [15].
If we look at the existing models closely, nearly all the pub-

lished papers trim their training dataset in some way, and those
treatments would for sure improve the predicting ability. For
example, Ye et al. [6] limit their model to the C3A2D3O12 garnets
and ABO3 perovskites; the CGCNN paper [12] states that only
28,000 of compounds are used out of ~130,000 data points from
Materials Project, making their model not generally applicable,
especially for those removed structures; the Roost model [16]
uses the “subset contains only the lowest energy polymorph for
each stoichiometry” from OQMD database, meaning their
model works for the stable compounds only.
Fig. 1 shows the actual predictive power of the artificial

intelligence (AI) models by plugging in the entire dataset
without data cleaning. All these models are reproduced using the
codes, parameters, and data treatment as stated in the original
papers, and all the models work as well as they are demonstrated
in the paper for the cleaned dataset. But if we incorporate the
entire dataset (139,368 structures from Materials Project) as the
input to validate the model, the predicting power of the models
becomes awful. For example, The MAE of the CGCNN model
increases from 39 meV atom−1 to 0.137 eV atom−1.
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It is indeed a common issue for AI research that the ML model
can be tuned with biased data to make it looking good, but it
hurts the ability of extrapolation of the model. It suggests that,
when we judge the AI models, both the predicting accuracy and
the ability of extrapolation matter, and hence both should be
validated to make sure the model is feasible and generally
applicable. In this work, we build an AI model for predicting the
Eform of inorganic compounds, and the model has an improved
capability of extrapolation compared with several existing
models.
Evidence has been demonstrated that AI models can advance

materials science significantly [17], e.g., accelerating the mate-
rials discovery of energy materials [18,19] and incorporating
expert knowledge into the materials design [20]. There are three
important things for building a good and reasonable ML model:
(1) good data and more data (shown in Fig. S1); (2) good ML
algorithm that can react to or pass over the information effec-
tively between neurons; (3) improved descriptors those can
extract the intrinsic connections between the properties. In this
work, (1) we do not perform any data “cleaning” trick to pur-
posely boost the model predictive power, rather the entire
dataset is included for the training process to make sure the
model is as universal as possible to cover a large configuration
space of inorganic materials; (2) a DenseNet (DN) algorithm is
employed to make sure the neurons are directly and effectively
connected; (3) to boost the model accuracy, it is found that the
electronegativity difference and structural information are
indeed the most important descriptors for determining the Eform
of compounds, and the prediction performance of Eform is greatly
improved after the addition of these descriptors. Hence, our ML
model can reach a fairly good predictive ability up to R2 = 0.982
and MAE = 0.072 eV atom−1 for all the compounds.

METHODS

Models
Eight conventional ML models as well as a neural network
model are adopted for predicting the density functional theory
(DFT)-calculated formation energy per atom (Eform), which are
AdaBoost Regression (ABR), Linear Support Vector Regression
(LSVR), SVR, Ridge Regression (RR), GradientBoosting
Regression (GBR), K-Nearest Neighbors Regression (KNNR),

Random Forest Regression (RFR), ExtraTrees Regression (ETR),
and DN [21,22]. In this study, the commonly used ML models
are implemented by scikit-learn [23] and the DN is implemented
by pytorch [24]. DN is a neural network model, which has three
hidden dimensions with node counts of [256, 128, 64], in
addition to an input layer with 119 nodes and an output layer
with 1 node. The DN model is trained using the MAE loss
criterion, or called L1 loss criterion, shown in Formula (1) and
an Adam optimizer with a learning rate of 10−3.

L f x Y1 = ( ) , (1)

where f(x) represents the predicted value and Y represents the
actual DFT-calculated value retrieved from the Atomly.net
materials-data infrastructure. The predictive performances of
models are described as variance (R2), MAE, root mean squared
error (RMSE).
The training of the AI models in this work usually takes ~20 h

on a single NVIDIA Tesla V100 card and the prediction of the
formation energy for single structures takes less than 1 s.

Descriptors
In order to obtain a useful AI model, several descriptors are
constructed for describing a crystal material. In general, there
are two distinct types of descriptors: composition-dependent
(CD) descriptors and structure-dependent (SD) descriptors. The
later incorporate the atomistic structure of a material, hence
making the model geometry-sensitive. The CD descriptors are
semantically extracted from the chemical formula of a crystal
material based on the elemental properties, like the descriptors
proposed by Magpie [4] and Oliynyk [25]. In this study, 44
different elemental properties (listed on Table S1) have been
chosen for generating CD descriptors. To each elemental
property, six kinds of statistical quantities (average, variance,
range, skewness, kurtosis, and sum) are derived as CD
descriptors, ending up with 264 CD descriptors.
For the SD descriptors, beside density and band gap, we also

propose some new/in-house SD descriptors related to the che-
mical bond (CB), coordination number (CN), and electro-
negativity difference (Δχ), which are all extracted from the local
environment of each atom in a structure. The density is calcu-
lated from the crystal structure via the Pymatgen [19], and the
band gap was directly retrieved from the “atomly.net” database.

Figure 1 The validation results of the AI models for (a) CGCNN, (b) Crabnet, and (d) Roost when plugging in all the data of 139,368 compounds from
Materials Project. The color represents the density of data points, and the darker the denser the points are.
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The local environment of an atom represents the interactions
between the atom and its nearest neighbors, and directly affects
the Eform of compounds. The nearest neighbors of each atom in a
structure are extracted by using the Voronoi tessellation method
[10], which has also been used for generating many other
descriptors related to the structure, e.g., the aforementioned
OFM descriptors [5]. By using this method, the real space can be
divided into a number of convex polyhedrons by constructing
vertical bisectors between neighboring atoms, similar to the
Wigner-Seitz cell, as shown in Fig. 2a. One can see that there is
only one atom in each polyhedron, whose nearest neighbors are
represented by the surface of the polyhedron.
Similar to the CD descriptors, we also use six statistical

quantities to generate the new/in-house SD descriptors. That is
to say, there are six CB SD descriptors (CBa, CBv, CBr, CBs, CBk,
CBu) which can be calculated as follows:

CB N CB= 1 , (2)
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where N is the number of atoms in the structure and CBi is the
average of the chemical bonds of the ith atom with its nearest
neighbors. As shown in Fig. 2b, the CB between the ith atom and
its jth nearest neighbor is expressed in the spherical coordinates
as (R, θ, φ)ij, which is represented by the yellow vector CBi,j. And
CBi is defined by

CB n CB n R= 1 = 1 ( , , ) , (8)i
i j
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where ni represents the number of neighbors of the ith atom.
Fig. 2c shows the coordination number CNi of the ith atom
counted via the Voronoi tessellation. The six CN SD descriptors
(CNa, CNv, CNr, CNs, CNk, CNu) related to statistical quantities
are calculated with the formulas similar to those of the CB SD
descriptors.
The strength of a chemical bond should depend on the elec-

tronegativity difference (Δχ) between the two bonding atoms.
Usually, for ionic compounds, the bigger the electronegativity
difference, the stronger the bond. The Δχ between atoms bonded
together will lead to the charge transfer from one to another,
greatly affecting the charge density distribution of the local

structure, and thereby the Eform of a system will be affected
because the total energy would be a functional of charge density
[26]. Therefore, the Δχ is essential to the prediction of Eform, and
thus we propose several SD descriptors of Δχ. Fig. 2d describes
the electron distribution caused by the Δχ between bonding
atoms. Here, we have chosen five different electronegativity
definitions, Allred and Rochow electronegativity (AR χ), Pauling
electronegativity (Pa χ), Martynov and Batsanov electro-
negativity (MB χ), Gordy electronegativity (Go χ) and Mullikan
electronegativity (Mu χ), to generate descriptors related to the
Δχ. To each electronegativity definition, the SD descriptors are
calculated by the following steps: firstly, the absolute value of the
Δχ between the ith atom and its jth neighbor (Δχi,j) is given by

= , (9)i j i j,

where χi and χj are the electronegativity of the ith atom and its jth
neighbor, respectively. Then, the Δχi of the ith atom with its
neighbors are calculated as the calculation as follows:

n= 1 , (10)
i i j
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where ni denotes the number of neighbors of the ith atom.
Finally, to each electronegativity definition, the six electro-
negativity difference SD descriptors (Δχa, Δχv, Δχr, Δχs, Δχk, Δχu)
for the whole structure are calculated similarly to the afore-
mentioned calculation method of the CB SD descriptors.
In the end, we got another set of descriptors which consists of

the 234 CD descriptors and the 44 SD descriptors based on 9
different structure-related properties as detailed in Table S2. The
30 CD descriptors with respect to 5 kinds of electronegativity
definitions are removed and replaced by the corresponding SD
descriptors related to the electronegativity definitions. Although
the treatments to build the descriptors, such as the Voronoi
tessellation, are well-known, those descriptors of electro-
negativity difference in this work are the newly invented, and the
following paper will show that they are fairly important.

Data and data availability
The dataset used in this work is obtained from the “atomly.net”

Figure 2 (a) The nearest neighbors of the ith atom found by the Voronoi
tessellation method. The construction of the SD descriptors: (b) CB; (c) CN;
(d) Δχ.
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[27], which is an-access DFT database. The details of the data
can be found in Supplementary information. The codes that are
used to generate and validate the models can be found at https://
github.com/atomly-materials-research-lab/Descriptor.

RESULTS AND DISCUSSION
Nine ML models are built to predict Eform, and their performance
are benchmarked by comparing their cross-validated coefficients
of determination (R2), RMSE, and MAE values of the test
dataset, which is the entire database without data cleaning (the
optimized parameters of the eight conventional ML models are
listed in Table S3). The top 20 important descriptors are
screened out by using the RFR method, and the correlations
between each descriptor pair are studied by the Pearson corre-
lation coefficient.
It is found that the newly proposed SD descriptor along with

the entire dataset (without data cleaning) can significantly
optimize the models, making it much better than the models in

Fig. 1. According to the validation results illustrated in Fig. 3, the
DN model (Fig. 3i) gives the best performance with R2 = 0.982,
while the RR method (Fig. 3a) has the lowest prediction accuracy
with R2 = 0.858. Other four classical ML models, GBR (Fig. 3e),
ABR (Fig. 3f), ETR (Fig. 3g), and SVR (Fig. 3h), can also achieve
a very high prediction accuracy of Eform with R2 > 0.95. For the
two tree-based models, the ETR with R2 = 0.961 is better than
the RFR (Fig. 3d) with R2 = 0.945. As most classical boosting
algorithms, both ABR (with extremely randomized trees as the
weak learners) and GBR (with decision trees as the weak lear-
ners) can implemented very high R2 = 0.957 and 0.952, respec-
tively. The R2 value of the KNNR model is close to 0.9 as
illustrated in Fig. 3c. Comparing Fig. 3b and h, it is found that
using the SVR model with the nonlinear RBF (radial basis
function) kernel function can get a better prediction perfor-
mance than that with the linear kernel function.
With the objective to estimate the effect of the new SD

descriptors proposed in this study on predicting the Eform of

Figure 3 The DFT-calculated vs. predicted scatter plots of Eform for the nine different ML methods with the new set of descriptors including both the CD and
SD descriptors: (a) RR; (b) LSVR; (c) KNNR; (d) RFR; (e) GBR; (f) ABR; (g) ETR; (h) SVR; (i) DN. The gray dash line in each figure represents the ideal curve
y = x. The color represents the density of data points.
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crystals, we investigated the changes in evaluation metrics (R2,
RMSE, and MAE) of the ML models with and without the SD
descriptors. As shown in Fig. 4 and Fig. S2, the prediction
performances of Eform for all the nine ML models have been
improved by increasing the SD descriptors, which indicate that
the local structure information describes Eform very well for the
inorganic materials. Fig. 4a depicts that the increase rate of R2

values varies from 6.3% to 17.0% in combination of the SD
descriptors with the CD ones. The SD descriptors dramatically
improve the R2 value of the ABR model for Eform from 0.829 to
0.957. For DN model, which has the highest predictive power,
the R2 value increase from 0.885 to 0.982, which is 11.0%
increase. The changes of RMSE and MAE values are shown in
Fig. 4b, c. One can see that the decreasing rates of RMSE and
MAE values fluctuate in the range of [20.5%, 60.4%] and [10.0%,
50%], respectively. These results prove that the newly proposed
SD descriptors, in particular the electronegativity difference of
neighboring atoms, can significantly improve the prediction
performances of Eform in the inorganic materials.
It is also observed that the electronegativity difference, unlike

the average electronegativity employed in previous studies,
indeed improves the model significantly. To analyze the control
factors of Eform, the RFR method is chosen for ranking the
importance of different descriptors, since the RFR method is a
tree-based learning algorithm and has advantages on both
accuracy and interpretability [28]. Fig. 5 shows the top 20
descriptors ranked for Eform prediction, and the correlation
between descriptor pair in the way of Pearson correlation
coefficient matrix. It is found that the Pauling electronegativity is

the most important factor for the prediction model of Eform
without and with SD descriptors (47.1% of Pa χr in Fig. 5a and
46.4% of ΔPa χa in Fig. 5b, respectively). Although the ratio of
ΔPa χa slightly drops when using the SD descriptors, the overall
ratio of the top 20 important descriptors increases from 74.6% to
82.6%. In Fig. 5a, b, there are five descriptors (Pa χr, Pa χk, AR χk,
AR χs, Mu χk) related to electronegativity and two descriptors
(ΔPa χa, ΔAR χa) related to “electronegativity difference”
appearing in the top 20 important descriptors, respectively.
Metallic valence represents the oxidation state of the metal in
alloy similarly to that of covalent compound. In the previous
studies for predicting the thermodynamic stability of per-
ovskites, the most common oxidation state is one of the most
important descriptors. The three descriptors (MVs, MVv, MVr)
related to the metallic valence [29,30] appear in the 20 important
descriptors in both Fig. 5a, b, respectively. Fig. 5b illustrates that
the density (ρ), coordination number (CNa), band gap (Eg) are
also important descriptors for improving the prediction per-
formance of Eform, which is consistent with the previous results
[14,31,32]. In the prior study of Ward et al. [4], it is pointed out
that the Eform of intermetallic compounds is best described by the
variances in the melting point (MPv) and number of d electrons
between constituent elements (V_dv). The similar result is also
observed in this study, because there exist linear relationships
between the melting point and boiling point. As shown in
Fig. 5a, b, the variance of the boiling point (BPv) as well as the
variance of d electrons and unfilled d electrons (V_dv, UV_dv)
appear in the top 20 important descriptors. The variance of
cohesive energy, the skewness and kurtosis of the 1st ionization

Figure 4 (a) R2, (b) RMSE, and (c) MAE values of the nine different ML methods for Eform prediction with and without the new proposed SD descriptors.
The red and blue bars represent the corresponding values before and after adding these descriptors, respectively.
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potential (CEv, 1st 1Ps, 1st 1Pk), also appear in the top 20
important descriptors.
Fig. 5c, d show the Pearson correlation matrix for the top 20

important descriptors without and with the SD descriptor set.
For each pair of descriptors, A and B, the correlation coefficient
RAB is defined as

R
A A B B

A A B B
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where A and B are the sample means of A and B descriptors
over the total n crystal materials, while Ai and Bi are the
descriptors of the ith material. As shown in Fig. 5c, strong cor-
relations are found in several pairs of descriptors: (1) two
descriptors related to the d valence electrons orbitals (UV_dv,
V_dv); (2) three descriptors related to the electronegativity (Pa
χk, AR χk, Mu χk); (3) two descriptors related to the thermo-
dynamic property (BPv, HAv). Comparing Fig. 5c, d, the changes

in the color distributions at the lower right corner (marked by
the black rectangles) show that the correlations of the top 20
descriptors decrease obviously by adding the SD descriptors.
Our results show that there is a correlation between different
definitions of electronegativity. As shown in Figs S3 and S4,
when the most important descriptor ΔPa χa in Fig. 5b is removed
from the collection of the input descriptors, the ΔAR χa
descriptor becomes the most important descriptor after ranking
again by the RFR method. Repeatedly with the above steps, when
removing ΔAR χa, the ΔAR χu becomes the most important
descriptor, which is consistent with the observed result in Fig. 5d
that there exist strong correlations among the descriptors (ΔPa
χa, ΔAR χa) and the relation on prediction performance of Eform
follows the trend ΔPa χa > ΔAR χa > ΔAR χu.
Then, the Eform of compounds can be predicted with the

constructed models. Fig. 6 shows the thermodynamic phase
diagram for compounds in Ti-O, V-O, Mn-O and Li-P chemical
systems obtained from the DN model and DFT. These four

Figure 5 The importance ranking of all descriptors (a) without and (b) with the new SD descriptors in predicting Eform. The bars marked by the red color in
(b) represent the relative importance of the SD descriptors proposed in this study. Pearson correlation coefficient matrix of (c) without and (d) with the SD
descriptors. The lower-case letters a, v, r, s, k, and u labeled in the upper-right corner of x- and y-axis labels are the abbreviation of “average, variance, range,
skewness, kurtosis, and sum”.
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chemical systems are selected to demonstrate the accuracy of the
model for their importance, since TiOx materials are commonly
used in photovoltaic devices to improve device performance
[33,34], VOx is a promising cathode material and likely to be
commercialized applicable in the future [35], MnOx is widely
studied as catalysts [36–38], and LiPx is the intermedia product
in certain anode reactions of Li-ion batteries [39]. The ther-
modynamic phase diagrams are generated using the same energy
correction mechanism as the Materials Project [1,40], to make
sure the energy hulls in this work are comparable to either
Materials Project [1,40] or Atomly [27] (also adopts the same
energy correction for generating the phase diagram). As shown
in Fig. 6a–d, The DFT data tell us that there are 6 stable crys-
talline compounds (Ti6O, Ti3O, Ti2O, TiO, TiO2 and TiO3) in
the Ti-O chemical system, 4 stable crystalline compounds (V2O3,
V3O5, VO and VO2) and 2 unstable ones (V6O13 and VO3) in the
V-O chemical system, 4 stable crystalline compounds (MnO,
Mn3O4, Mn2O3 and MnO2) and 1 unstable crystalline compound
(MnO3) in the Mn-O chemical system, and 4 stable crystalline
compounds (Li3P, LiP, Li3P7 and LiP7) in the Li-P chemical
system, respectively. Note that the DN model can assess the Eform
of those compounds fairly well. It is seen from Fig. 6c that in the
Mn-O chemical system, there is a distinct advantage of the
model with the SD descriptors on predictive performance over
that without the SD descriptors. The other panels in Fig. 6 show
that both models, with or without the SD descriptors, can cap-

ture the shape of the energy hull to some extent. When the SD
descriptors are taken into account in the model, the predicted
Eform is off only by ~135 meV atom−1 on average (ranging from 0
to 373 meV atom−1) for the Ti-O chemical system,
~40 meV atom−1 (ranging from 0 to 102 meV atom−1) for the
V-O chemical system, ~33 meV atom−1 (ranging from 0 to
120 meV atom−1) for the Mn-O chemical system, and
~11 meV atom−1 (ranging from 0 to 27 meV atom−1 ) for the
Li-P chemical system, compared with the DFT values. Hence,
our model makes the prediction of Eform of inorganic materials
easy and accurate.

CONCLUSIONS
In summary, we develop a universal model for predicting the
formation energy of compounds as all the data points are
employed for training without the “data cleaning”. The “data
cleaning”, as performed by many other literature, makes their
model looking good, but worsens the capability of extrapolation
of the model. We have also identified several new SD descriptors
related to the electronegativity difference and coordination
numbers for predicting the formation energy of a crystal
material, derived from the local environment of the material via
the Voronoi tessellation method. We demonstrate that these new
descriptors can significantly improve the prediction accuracy of
formation energy not only for eight classical ML methods but
also for another neural network method. The neural network

Figure 6 The thermodynamic phase diagram for compounds consisted in (a) Ti-O, (b) V-O, (c) Mn-O, and (d) Li-P chemical systems. The blue triangles,
red circles and green rectangles indicate the DFT-calculated Eforms, predicted ones with and without the SD descriptors proposed in this study, respectively.
The blue envelopes are made up of the DFT-calculated Eforms of the stable structures in each chemical system.
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model achieves the high prediction accuracy of R2 = 0.982 and
MAE = 0.072 eV atom−1. The tree-based RFR method is chosen
for screening the key descriptors for best describing the for-
mation energy. It is found that the Pauling electronegativity
difference between bonding atoms is the most important factor
with a ratio of 46.4% for the prediction of formation energy. Our
work shows that by adopting the physics-based descriptor as
well as a good dataset, the predictive power of ML models can be
significantly improved. There might be still a large room out
there to keep enhancing the predictive power, if we can find
better descriptors with better data. We expect that the model
presented here can provide a useful tool for materials science
community immediately towards extremely fast, large-scale, and
accurate materials modelling and prediction without costly
computations.
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一种预测无机晶体形成能的高精度泛化模型
梁英宗1,2,陈明威1,王亚南1,2,贾华显2,3,芦腾龙2,谢帆恺2,蔡光辉2,
王宗国4, 孟胜1,2*, 刘淼1,2,5*

摘要 随着数据科学和材料科学的进步, 人们如今可构建出较为准确
的人工智能模型, 用于材料性质预测. 本文中, 我们以170,714个无机晶
体化合物的高通量第一性原理计算数据集为基础, 训练得到了可精确
预测无机化合物形成能的机器学习模型. 相比于同类工作, 本项研究以
超大数据集为出发点, 构建出无机晶体形成能的高精度泛化模型, 可外
推至广阔相空间, 其中的DenseNet神经网络模型精度可以达到R2 =
0.982和平均绝对误差(MAE) = 0.072 eV atom−1. 上述模型精度的提升
源自一系列新型特征描述符, 这些描述符可有效提取出原子与领域原
子间的电负性和局域结构等信息, 从而精确捕捉到原子间的相互作用.
本文为新材料搜索提供了一种高效、低成本的结合能预测手段.
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